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FOREWORD

The Post-Doctoral Program at Rome Air Development Center is pursued

via Project 9567 under the direction of Dr. W. W. Everett, Jr. The Post-

Doctoral Program is a cooperative venture between RADC and the participating

universities: Syracuse University (Department of Electrical and Computer

Engineering, the U. S. Air Force Academy (Department of Electrical Engineering),

Cornell University (School of Electrical Engineering), Purdue University

(School of Electrical Engineering), University of Kentucky (Department

of Electrical Engineering), Georgia Institute of Technology (School of

Electrical Engineering), Clarkson College of Technology (Department of

Electrical Engineering), State University of New York at Buffalo (Department

of Electrical Engineering), Florida Technological University (Department

of Electrical Engineering), Florida Institute of Technology ( College

of Engineering), Air Force Institute of Technology (Department of Electrical

Engineering), and the University of Adelaide (Department of Electrical

Engineering), in South Australia. The Post-Doctoral Program provides, via

contract, the opportunity for faculty and visiting faculty at the participating

universities to spend a year full time on exploratory development and

operational problem-solving efforts with the post-doctorals splitting

their time between RADC (or the ultimate customer) and the educational

institutions.

This effort was conducted via RADC Job Order No. 9567 0006 for the

Federal Aviation Administration. Mr. Fred Sakate was the FAA focal point,

and he participated closely In the technical coodination meetings and

cable testing sessions.
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CHAPTER I

Introduction

Earth conduction problems are encountered in various communication

and power system circuits in connection with strone, eiectromagnetic dis-

turbances caused by nearby lightning discharges. Excessive interference in

conventional exposed metallic communication lines Is Indicated unless

adequate protection measures are provided. This may require extra electro-

magnetic shielding of certain important communication lines and associated

buildings housing sensitive equipment and/or the installation of protective

devices on certain communication equipment.

This study is primarily concerned with the theoretical analysis of

the resultant circuit disturbances caused by earth conduction effects of

lightning discharges. Two basic analytical models are presented In this

study to describe the various kinds of coupling mechanisms between a

lightning discharge and anearth-return transmission line.

The theoretical study described in this report is part of a larger

study program to provide protection for communication electronics equip-

ment against transient electromagnetic disturbances. Current and voltage

pulses are Induced in cables running between buildings or equipment

enclosures. These currents and voltages are then coupled into the terminal

equipment. The electromagnetic disturbances may be the result of nearby

lightning activities or man-made electromagnetic pulses. This larger

study, known as the FAA Lightning Protection Study, has been performed

by the Post-Doctoral Program through several of its member universities

for the Federal Aviation Administration. The institutions Include the

Air Force Institute of Technology, Florida Institute of Technology,

Georgia Institute of Technology, and Purdue University. The Individual

participants In the FAA Lightning Protection Study are listed in Appendix D.



1.1 FAA Lightning Protection Study

Increasing use of solid state, integrated circuit electronics in FAA

communication and control equipment means that reliance on the over-voltage

protection adequate for higher voltage electron tube and discrete transistor

circuitry would be inadequate. The over-voltage protection of carbon blocks,

in the several hundred volt range, and neon bulbs, with long, relatively

high inductance leads in the 40 - 100 volt range, is not adequate for the

solid state circuits which operate at lower voltpqe levels (presently down

to 5 volts).

The first phase of the program Is an overall study and consists of

three technical tasks: (1) the determination of the voltage and current

levels likely to be conducted to FAA equipment; (2) the determination of the

susceptibility levels of FAA Instrument Landing System (AN(GRN-27(V)]; and

(3) the determination of lightning protective devices that are available to

reduce the levels of (1) to those permitted by (2). These three tasks have

been performed In parallel with close interaction and are essentially

completed(i)'(2),W3). Appendix 0 lists the schools having primary

responsibility for each of the tasks. This report Is the result of the

w ork done under the first technical task. Only the theoretical foundation

and analysis are presented in this report; detailed numerical calculations

are to be reported in a companion report.

.2 Lig htnng induced Transients on Buried Cables

Numerous Interference and protection problems are encountered In the

development and operation of extensive communication and power systems.

These problems are caused by the Internal coupling of such systems with

each other and by the external presence of the earth which, In some measure,

is involved as a return conductor. The earth also serves as a return con-

ductor for lightning currents, which often occasion disturbances In commun-

ication and power circuits. Lightning disturbances are largely atmospheric

phenomena governed by the physical properties of the air. However, the

behavior and effects of the lightning near the surface of the ground in

communication and power systems are primarily earth conduction problems

caused by the finite conductivity of the earth. Therefore, problems arise

both in communication and power system circuits concerning the protection

of transmission lines and associated equipment against Interference and

possible breakdown caused by excessive voltage or current surges caused by

lightning discharges.

""..:2



To deal adequately with such problems, It is necessary to consider

theoretical solutions to the basir problem in which the earth, as well as

cond'ucting current paths, are involved In the lightning discharge. The

analysis of such problems Is inherently more complicated than the problem

of completely metallic circuits embedded in an insulating medium, since the

great extent of the earth necessitates the use of electromagnetic field

theory, rather than conventional transmission line or circuit theory, in the

solution of most aspects of the problem. It is necessary to restrict the

analysis to fairly simple fundamental cases, in which simplified models of

the earth, cable, and lightning channel geometries are used, on account of

the complexities that would otherwise arise. "herefore, Ionization effects

caused by high induced voltages or electrolvtic actions are not considered.

Also, the heterogeneous character of the earth as a conductor and an elect-

rolyte are not considered. Furthermore, the e.:tremely variable nature of

the lightning currents and voltages are not considered; however, typical

average values of the lightning channel parameLers are used.

-1.3 Overview

This report Is organized as follows:

First, the basic equations which govern the behavior of the electromagnetic

disturbances caused by earth conduction effects of lightning discharges are

listed In Chapter 2, along with the definitions of the scalar, vector, and

Hertzpotentlals, which will be used to determine the form of the solutions.

Then, the fields due to an electric dipole In free space are given In Chapter 3.

rhese free space dipole fields are then generalized to detnrmine the fields

of a vertical or horizontally oriented dipole above a flat earth. A knowledge

of these fields Is essential for determining the mutual coupling between the

dipole-like lightning channel and a buried wire. Next, the actual current

induced on a buried wire is determined approximately (in Chapter 4) and

"co<eactly (in Chapter 5) from a knowledge of the mutual couplinq Impedances,

which were determined previously In Chapter 3. In both the approximate and

the exact formulations, the results are presented in the form of an equivalent

distributed transmission line mcdel of the coupling phenomena. In Chapter 4,

'he induced electric field Intensity along tte outer conductor of the cable

is also determined for a lightning stroke to qround, In Chapter 5, the

characteristic equation of the transmission line Is solved, via Integral

transform techniques, to determine the characteristic values of the trans-

mission line, e.g., the propagation constant and associated propagation modes.

3

...... .....



Th ",'nulting Induced current and voltage surges on the outer armour of

the cobla Is thereby determined for a direct strike via arcing to theI cablo and fow an Indirect strike via conductive energization through the
ear~th. Once the induced current and voltage surges are known on the outer

armour of the cable, the voltage and current standing waves on the trans-

Pihion line can be determined by findingj, and integrating over the length

of the line, thes Green's Functions for a distributed voltage or current

sourcat as Is done In Chapter 6. Next, the Induced current and voltage

surgas on the center conductor of the coaxial cable, resulting from the rene-t-

trationi of the lightning Induced discharge through the outer armour and the

inneor shield of the coaxial cable are determined via the impedance transfew

functions, which are developed In Chapter 7. Some of the details of thee
above analysis are presented In the Appendices.

I 4



CHAPTER 2

Basic Equations

This chapter of the study lists the basic equations which govern the

behavior of the resultant electromagnetic disturbances caused by earth

conduction effects of lightning discharges. For a complete exposition'

of the subject matter and for other aspects of the subject matter than

are of primary concern here, reference is made to the literature on

electromagnetic theory, transmission line and circuit theory.

2.1 Maxwell's Equations

We start with the time dependent Maxwell's equations for the field

vectors ", 9, •, and 9.

-Vxt(rt) -t r_ ( ,t) (2.1)

VxY((, t) (+÷t) + 1(, 't) (2.2)
s 3

O (2.3)

( = Ps(rt) (2.4)

where p and are respectively the source charge and current densities
SS S

and I is the conduction current density. Obviously, we will be dealing with

four different media: air, earth, conducting wires, and insulating layers.

Each medium is characterized by Its permeability, permittivity, and conductivity:

.,, c1, and a,, where I stands for either a(alr), e(earth), c(conductor), or

I(insulator). The constitutive relations In each medium are

4..~( ,t) P= i ( , t) . )

C, = ,t) (2.6)

("r = - t) t ,t) (2.7)

0a



It is desirable to transform equations (2.1) - (2.7) to the "frequency"

domain. For this purpose, we deffnethe Fourier transform pairs between

t and w:
I [ f e+Jwat

1t) 7 00 (,)eit dw(.

(r , w) 1(rt)eJ]t dt (2.8')
.4 .4. v/Tr 0

where F and F are any of the field variables or sources defined above

and j r--T. Therefore, In the "frequency" domain, the equations become

V = -j2.1')

VxA = I + +jw (2.2')S

4.• (2.3')
V-B =0

V.P = p (2.4')

and

= l(2.5')

1E (2.6')

1 =(2.7')

where the arguments r and w are dropped, for simplicity. While the source

terms P and I are arbitrary, they are related by the conservation of

charge, I.e.

(Ii + i) = -j wp (2.9)

Making use of the conservation of charge (2.9) and the constitutive relations-4-

(2.5') - (2.7'), the flux densities 0 and "can be eliminated In favor of the

field Intensities e and H, I.e.

Vxt= -j wý i H (2.1")

VxH - +4]weI E + J (2.2")

v.iT - 0 (2.3")

Vv.J (2.")
S I,

JWC I6



where the complex permeability and complex permittivity are defined by

are complex quantities.

2.2 Hertz Vectors

Hertz showed that under ordinary conditions, the field intensities

and H are derivablefrom a single vector function 7r, known as the Hertz vector.

It can be shown, by direct substitution, that equations (2.1") - (2.4") are

satisfied by writing

(2.10E = k. i+ V(V. )

= jl Vx• (2.11)

with the Hertz vector 71 specified by the differential equation

V T + ki = - w/ ) (2.12)

where
2 2 2_.
k 0 + j+ = ) WI!

with ca ! 0, 3 • 0.

It is recalled that the general solution of an inhomogeneous linear

differential equation consists of two parts: a homogeneous solution and a

particular solution. One possible way to express the particular solution Is

e-jkl Ir-r'I
4f. (7"') e (2.13)471JW~i - -s..~ --.. i ---' d v'
V1

The homogeneous solution can be expressed in various forms. For the problem

at hand, it is convenient to express it In terms of the elementary cylindrical

wave func t ions Zn( More specifically, each component of the Hertz vector

can be written as

7



e jn : Cn(T)Zn(Tr) ±z~i dr(f0 (2. 14)

_I 2

where and where the dummy variable T of the Integration

represents the transverse part of the propagation constant. To Insure

convergence at z-+-±o, we choose Re ýI > 0

In equation (2.14), the coefficient C (T) is left unspecified. Ton
complete the description, It is necessary to state the boundary conditions:

the tangential components of the field Intensities t and ý are continuous

at a boundary free of surface current. The boundary condit-ions can also
4.

be expressed in terms of the Hertz vector IT and Its derivatives and will be

discussed in detail later.

2.3 Vector and Scalar Potentials

The Hertz vector is also related to the vector and scalar potential

and 0 via the following relations

Z = (° + j"E j-7,)l, (2.15)

4) = -. T(2.16)

-V*7r

8?



CHAPTER 3

Fields Due To An Electric Dipole

3.1 An Electric. Dp.ola in Free Space

Consider an electric dipole IdPi surrounded by free space (s9E0, IJi4J, c?=O).

Vc, i.onvenience. the coordinate system Is so chosen that the dipole is loeated at

the origin and oriented along the z-axis. If the medium is assumed to be infn-

itel,- large, then the only condition that the Hertz vector must satisfy Is the

radiation condition at inflnity. Therefore, the Hertz vector is obtained from
4) . 1 ^I

equation (2,13) by noting that J =Idk6S(r )z, i.e.S

2 2-jk 0/r + Z
-T + Z d e 0, )

2 2 (..)

o r + z

k0 0 OE _

i4 is instructive and convenient to express equation (3.1) as the super-

- -ý- ,o.f elementary cylindrical waves.; For this purpose, use is made of

.:.~;'i:..>,,r:,id's fotmula5)" ",(6), and we obtain,

4-• Idt, T zlo
Tr + zj -I- J(rr)e dT (3.2)

z 41Tw 0 0T

0 0 Tand i.,, branch cut Is chosen such that - iT/2 5 arg E0 < 7- . A comparison of
(3.2) with equation (2.14) shows that only the. term Independent of angle

ised, as expected from physical considerations.

: ..-:oLical Electric Deipole Above a Flat Earth

f.! consider two regions separated by an interface z=O. The space above the

is taken to be free space (1'0to c-=•0 °-O), while the medium below the
j-•,' aa is taken to be earth (P e Z0O' E ae). Our aim is to derive the expres-

s,. •for the fields generated by an electric dipole Id& oriented along the z-axis

ar:d i'cated at z-zo, as shown In Fig. la. The procedure Is as follows. In the

of the earth, the field, referred to as the primary field, is due to the

JiulnK alone, and the Hertz potential

9
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Fig. 1. A Dipole above a Flat Earth
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is given by equation (3.2), with the dipole shifted from z-0 to z-z 0 . In the

presence of the earth, the primary field Is partially reflected by the inter-

face and partially transmitted Into the earth. It will be demonstrated later

that for the geometry under consideration, all the boundary conditions can

be satisfied by working with only the z-component of the Hertz vector 1T, and

only the term Independent of angle (n-0) in equation (2.14) is needed. Thus,

for z > 0, the z-component of the Hertz potential can be written as

za + ,d r - + R (T)e-z OJo(Tr)dT (3.3)

and for z < 0

ze d 1 T zz(t)ee Jo(ter) d-C (3.4)Jo

where R (T) and T (T) are the reflection and transmission coefficients to bezz ZZ
2 +j

determi'ned and k eW (e0 e e

.and the branch Is chosen such that--Lg arge < Tr
2 e ,

To determine the reflection a.,d transmission coefficients R (T) and

T zz(T), it is necessary to appeal to the boundary conditions. Since InI = z ITz

and isz independent of ý, we have, from equations (2.10) and (2.11)

^3Irir. + ^ +2 k I zr k i) (3.5)

H=" (oi + jW)el - (3.6)

Thus, the boundary conditions at z-0 require that

alIT z a lTr z = r z (3.7)
araz + e(.

~za +JA) 'ze(3.8)
0 r ae r



for all values of r. Since equations (3.7) and (3.8) must be valid for all

values of r, these two equations can be simpllfied by Integrating with respect

to r, I.e.,

5irza ze
T =Z

•--• - -•(3.9)

k 2it I (3.10)0 za e ze

In equation (3.10), the coefficients are expressed in a convenient form by

noting that Va Pe : VO. By substituting equations (3.3) and (3.4) Into

equations (3.9) and (3.10), we obtain

2

R ()1 2 ko0 e -00 (3.1
zz 

ke 20 + k0 ]e

2 2 T (3o10Tzz (T) -k2o O - e(.2
ik + k•

e 0 k0 ~e

Upon substituting equation (3.11) Into equation (3.3), and making use of

Sommerfeld's formula, we obtain

-A ~R -Jk R-
+ d + e - A] (3.13)

za =+Ji-w*- 0

where

R /r2 + (z - Z0)2

R =F. +(z+z 2 (3.14)

An e "20( + 0 j 0(Tr) dt
Au20  j O[ 2 CO+k02 t el-

12
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The field Intensities In the air are determined by substituting equation

(3.13) Into equations (3.5) and (3.6). More specifically, the cylindrical

components of the fields, for z > 0, are

= jIdi •
Er =+j d a (3.15)

0

E -0 (3.16)

E +j Z + ---Z (3.17)
0 1z•z

and

H =0
r

H d Z (3.18)

H - 0 (3.19)z
where -jk0 R -Jk 0 R'

Zt R R' A) (3.20)

and 2
k n 0 Zt (3.21)

The significance of the terms Zt and Z are discussed In Appendix C.

3.3 Horizontal Electric Dipole above a Flat Earth

Next, consider a horizontal electric dipole Idt oriented along the x-

axis, as shown In Fig. lb. If only the x-component of the Hertz vector

Tr, I.e., i W x r , were used, the boundary conditions at the Interface z-0
X..

cannot be met (7 In fact, we have to supplement r with the homogeneous

solution as given in equation (2.14) for 2¶ . Since the boundary conditionsz

are somewhat complicated, It Is convenient to work with Carteslan coordinates

first, and then to transform the results Into cylindrical coordinates.

t

13



S I nce•÷
ITI rx1 + i zlT (3.22)

then the rectanqular components of the field Intensities • and are, from

equations (2.10) and (2.11),

22

Ex k 2 7t + T + (3,23)

I2x I 2 +

air xi z i Z
Ey axay + ayaz (3.24)

2 2x •2Tr

E k2 + 7T + ziS Ik zi + - (3.25)z I z axaz)z

and

3TzI

Hx w (aI+JW 1) -- y (3.26)

O'Tr x I 9 ,'rrz .
Hy a= (CrI +JW I) (•-T- - -=-- (3.27)

Hz =-(a i+JWC i) (.3.28)

Thus the continuity of Ex, E y H x, and Hy at z-0 dictates that

k ~ '( 2T +T Zrx aa C2 ff + aarR+ai (3.29)oxa -r-- + =zk 'xe r(-

_!,2.•rxa + -a ze (3.30)ýy' ax az ay a x *')(.o

14



k02 3Rza 2 1Tze
k k ke ay (-1

2k0 x 7 2• (are ze

k 2 xaz za ) ke2 (Xe - e (3.32)o ZZ7- ;x e Z a

These equalities must be valid for all values of x and y. Thus, by Integrating

equations (3.30) and (3.31) with respect to y, we obtain, at zO,

D xa + za zexe aize

__ _k . _ (3 334)

k0 2za e ke2 ze (3"34)

Making use of these two relations, equations (3.29) and (3.32) can be simplified to

o k e xe (3.35)

"2 ai xa 2 a)•xe
0 ko e z (3.36)

In the absence of the flat earth, the primary field 7rxa Is simply, from

equation (2.13) and Sommerfeld's formula,

""Id2r -1zz 01 dir (3.37)
xa JK U'

0 0o 0

In the presence of the flat earth, there also exists the zrcomponents of the

Hertz vector In the air and in the earth, i.e. ivza and ze, and the x-components

of the Hertz vector In the air and In the earth, I.e. ixa and 7xe. The x-

component of the Hertz vector In the air ixa Includes the primary field

!Txa , as given in equation (3.37). Before writing down these terms, It Is

necessary to examine their angular dependence. It Is noted

that IT and iT must satisfy equations (3.35) and (3.36) for z-O and for
xa xe

all values of 0 - r • o, 0 f 7 I t It is also noted thatthe primary partof t , as
xa'

given byequation (3.37), Is independent of ý. 1hus, In view of the orthogonality

properties of e 0 5 <. 2"t, we conclude that IT and Yx oontain only

xa xe

15
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the terms independent of angle (n-0). Thus, for wx8 and Rxe, only the n-O

term of equation (2.14) is retained, I. for z > 0

Txa +j I± 2 L e -z-Z'O+ Rx(T)e J o (-cr) dT (3.38)

=a +4 Ide 0 Ze

xe I dt Txx (T)e Jo (r) dt (3.39)

To determine the • dependence of iZa and irr equation (3.33) Is

expressed Irn cylindrical coordinates

C xa +)rza xe rze (333')7-F+ -z =- =r + 1.

As Tr and iT are Independent of ý and equation (3.33') Is valid for allxa xe

values of 0 4 0 e 2iT, ir and ir nzust have coso-type dependence. Thus, Inza ze

writing down the expressions for 7rze and za , it Is only necessary to keep the

n=+1 terms, i.e.

7za [ z()e'z• J,(¶r)d cos 4 (3.40)

LXze 4r i )e J (,rr)dT cos 4 (3.41)
0 T

Upon substitution of equations (3.38)-(3.41) Into equations (3.33'), (3.34)-(3.36),

we obtain:

k 2 (Z0 (3.42)

XXk 0

"() 2 ae zO (3.43)RXX() +-- a-

16



T ( -2 k" 0e)' 2 "Z oo (3.44)XZi (k) 2 -• ke2  ko2  e
_xz % _+ 

(3

R (T) -2 2 % - e(4
xz k 2o % -e

Thus, the Hertz potential due to a horizontal dipole Idt. oriented along the

x-axis and located at z-z 0 can be determined by combining equations (3.42) -

(3.45) with (3.38) - (3.41). It is noted that rxa can be written In a rather

simple form:

* + Ide + .k e -jk0RI A' (3.46)
xa 4ne0R R

where R and R' are defined in Section 3.2 and

A' a 2 . .. e J (tr) dT (3.47)
0 tL. OR0 +C e

Also

IT + J •Id A Icos (3.48)

where ( rOe) 2  (z +z0 )
A" -2 J a 0 02 J(Tr) d¶ (3.49)

Se &0+ k e Ce

The transverse electric field Intensities in the air are determined by su'-

stituting equatlom (3,46) and (3.48) into equations (3.23)-(3.28). More

specifically, a2
E Idt t-Z (r) +a (3.o50)

. @2

Y Id a2 1 (3-51)

17
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C 4

Z * j~ .2L l(I+yr)e'yr
fa 0  21t C (yr)2  (3.53)

'y u Jk,

Again, the significance of the terms Z end Z are discussed In Appendix C.

a.e.d...u..ed. n.A.pend......
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CHAPTER 4

Coupling Model (Approximate Solution)

Our next task is to evaluate the current induced on the conductor by

the lightning strokes. Practically all buried cables presently In use have

some sort of plastic jacket. Even if a bare conductor is used, there will

be a layer of oxidation at the surface of the metal wire. In addition, It Is

likely that a thin layer of air Is present between the metal surface (or

metal oxide surface) and the soil. In short, we should not expect the bare

wire to be in electrical contact with the soil. To be realistic, a lossy

dielectric layer Is Included in our consideration.

Most cables are buried 3 0"- 3 611 below the s-urface of the earth, For most

frequencies of practical Interest, the current which arrives at the far end

of the wire due to a lightning stroke Is essentially insensitive to the var-

iation of the depth of the cable, provided that the wire is long and that the

depth Is deep enough. Thus, In this section, the model depicted in Figure 2b,

which is an approximation to the configuration shown In Figure 2a, will be used

to derive a set of differential equations governing the current induced on the

buried wire.

4.1 Transmission Line Equations

The axial direction of the wire Is taken to be the x-axls, (Figure 3).
rhe field at any arbitrary point in the space can be decomposed into two

parts. One part is the field produced by the external sources, In the absence

of the wire and the insulation layer, and will be designated by a superscript 0;

Lhe second part is due to the current induced on the conducting wire, and will

be designated by superscript 1.

To find the field produced by the current on the wire, we start with one

of the Maxwell's equations (2.1') In Integral form:

f CI t IWf SJ A (4.1)

aind choose the contour to be C1, as shown In Figure 3a. As shown In Figure

.i,, the line Integral along the path C can be broken into five parts

19
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SLre (r,x)dr +J l(r,x)dr + fXEyl~xd

+ f E (r,x+Ax)dr + FE 1(r,x+Ax)dr

=j {XA L(,r,x)dr + 8 e(r~x)dr dx (4.2)

After collecting the terms and noting that

C co 9E (r,x)
Ef rxd + El (r,x+Ax)dr Ax dr
fre (i-,redf Jax

JE I (r,x)dr + IEr I r, x+Ax)dr Ax f ?rx)d
C ~bb

we have

Ax LF 3E r (r,x) dr + fooE re (r~x) dr +EI bx
lb

-JWAX Lf~I(r,x)dr + JBe (r~x)drj (4.3)

If a voltage V and a flux $D are introduced as

V(x) = fc Ipg (r,x)dr + IEre (r,x)dr (4.4)

~(x) JB Il(r,x)dr + ~10"3 (rix)dr (4.5)

then the equation (4.6) becomes

dV(x) - jw4ý(x) - E I (bx) (4.6)
dx Z

This is one of the desired differential equations.

22



To find the second differential equation, we examine another one of

the Maxwell's equations (2.2') in Integral form:

I -14 44.7>

fK dC Z -f (a +Jwe )E dS (4.7)C2 S2

and choose the contour to be C2 , as shown In Figure 3b. Clearly, the line

Integral along path AB and along path DE cancel exactly. When the wire Is made

of good conductors, I.e., arc>>w, the displacement current term In the wire

may be neglected, then

fBCD id- = d I (x + Ax) (4.8)

LEFAld• = -Ix(x) (4.9)

where I is the axial current carried by the wire. Substituting these two
x '

equations Into (4.10), we have

dlix) (
dx (oi +j (O l)Erl (b,x)•2,rb (4.10)

To make (4.9) and (4.11) useful, It Is necessary to express V, 0, E rl 1
I

and E In terms of I explicitly. For this purpose, three Impedances arexl x

Introduced

(I) Surface Impedance (or skin effect Impedance)

E (b,x) E 0(b,x) + E I(b,x)
z x x _x (4.11)

zs l(xT = (x)

(II) Longitudinal (inductive) Impedance

ZL I +J (x (4.12)
x

(HiO) Transverse Impedance

V(x) (4.13)Z 2 b (01 -j_ l)Er i_ )

23
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Upon substituting (4.11 )-(4.13 ) Into (4.6) and (4.9), these two

equations assume the form of the transmission line equations.
.:V(x) - (x) (ZL + Zs) +E (x) (4 lb

dx x 0

di (x)dx L V(x) (4.15)
dx z 1.

Figure 4 gives a simple and familiar representation for the transmission line

equations. As we are mainly Interested in the current I , It would be desirable

to elniinate the voltage V in favor of the current Ix. However, the resulting

equation would be extremely complicated as the impedances ZL, ZS, and ZT are also

d•ependent on x. Fortunately, the Impedances ZV, Z , and ZT are approximately

constants under certain circumstances, to be discussed in Appendix A. Under the

approximation indicated there, these Impedances are

ZL ZLI +Z L2 (4.16)

ZT ZTI + ZT2  (4.17)

The expressions for ZLl, ZL 2 , ZTl, ZT1T2 , and ZS are given in Equation (A.32)-

(A.36) While these equations are approximate, they are valid for most situations

of practical interest. In addition, from the definition of, and the expressions

for, the longitudinal and transverse impedance Z1 and ZT, it is clear that these

expressions can be extended to Include multi-layer cables. When the impedances

7st ZL' and ZT~ are approximately constant, equations (4.14) and (4.15) reduce

to the well-krown transmission line equations with a distributed source term

E (x). The solution to such a system of coupled differential equations can

best be expressed In terms of voltage and current Green's functions as

discussed In Chapter 6.
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4.2 Distributed Fields Due to Lightning Strokes to Ground

We shall use the results just obtained In Chapter 3 to calculate the

fields and the potentials of the lightning stroke to ground. The lightning

strokes are represented by a current I along the z-axis. The current

path is subdivided Into small segments dz and the Hertz vector iT due to each

segment Is given by equations (3.4) and (3.12). Thus, the total Hertz

vector, for z < 0, is

and +z 00 i dz' r 2ke0 2kT e &0  + Z& a (Tr) dT (.8

and the scalar potential o e Is, by substituting the above equation into (2.16),

.(rz) - 0 2e e ,TJ0(Tr) dT

0 e 0 Ge

Of particular interest to us is the case of low frequencies where

wE << a, and the displacement current term is negliiIble. Under such

conditions, a rather simple approximation for (4.19) can be obtained. By

letting WE-1€O, we obtain,

(r,z) Z - e Jo(Tr) dT2e 0

The integral can be evaluated (7) and leads to

e (rz) 2 22TC/2 
(4.20

e [r + z (4.20)

which Is the same as the potential at (r,z) Inside or on the surface of the

earth when a dc current I is entering at the origin.

In particular, the distributed source E0 (x) Is given by

do
E (x) = - -
0 dX

26



CHAPTER 5

Cotýpling Model (Exact Solution)

In order to establish exact formulas for the propagation characteristics

on earth return conductors, rigorous theoretical solutions for the propagation

of current along an extended conductor In infinite contact with the earth are

obtained for the case In which the current enters the earth at an electrode

which represents the terminal effects of a lightning channel. The general

case is again considered here, In whish the conductor is not necessarily in

direct contact with'the earth, but has a contact Impedance with the earth,

as In .;ables with coverings provided for corrosion or mechanical protection

or electrical shields.

5.1 Transmission_,Lne Equations-

Consider an extended straight conductor of radius Po half buried in the xy

plane of a rectangular coordinate system (x,y,z), as shown In Figure 5, and let

the x axis extend along the conductor, Let 1 Cx) and e (x,y) be the scalar

potential in the conductor and In the earth (at the separation distance y),

respectively. Also, let Ac(x) and Ae(X,y) be the x components of the vector

potentials in the conductor and In the earth (at the separation distance y).

respectively. It is assumed that there are no radial variations In the field

variables inside the conductor.

The x component of the electric field Intensity E (x) along the surface
c

of the conductor is

Ec (x) -- • ((x) ) =(x) (5.1)

and the x component of the electric field intensity Ee(xpO) In the earth

adjacent to the conductor surface at y=P 0 Is
d

E (X'p) d (X'P)JA (x'P (5.2)

Since there Is no change In the magnetic flux between the conductor and the
010)

earth adjacent to it

Ac (x) - Ae(x,pO) 27 (5.3)
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Fig. 5. Lightning Stroke/Cable Geometry
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The electric field intensity E x) along the surface of the conductor Is alsoc

given by

EC( I Zlc( (5.4)

where ZI Is the internal Impedance of the conductor per unit length, As shown

in Appendix B, k J0 (kp )

' JT 27TrP0 JI (k Po
From the above equations

Eefx,PO)-Z I ix) (5.!0 1c xx [ (cix) "(e (x' P.) ](.;

The resultant electric field intensities are regarded as the sum of an

impressed primary field (denoted by a single prime superscript), due to the

lightning channel, and an Induced secondary field (denoted by a double prime

superscript), due to current In the conductor, I.e., let

Ee(x,y) - Ee'(x,y) + E e(x,y) (5.6)

and
Pe(xy) -e '(x,y) + 4e"(x,y) (5.7)

ýC(x) = ýc'ix) + ýc"(x) (5.8)

The Induced secondary potential between the conductor and an adjacent point in the

earth has the following relation to the leakage current I (x) where

! qc'WX -e @(XPo) I k Wx/ Y 1(5.9)

and

I(x) d I (x) (5.10)
dx c

and YI Is the admlttanceof the conductor InsulatIon per unit length. Also, for a

wire of Infinite length, the Induced secondary electric field Intensity due

to a current I ix) distributed along the entire length of the conductor Is

+Cc

Ee"ix'P0 ) ("f dx'Z (roQ i ( x')+ •f dx'Z (r ) d, I,(X9) (5.11)
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whe re

r~o= /o2 2 (5.12)
pox /o X

and

"-X x-x' (5.13)

and Z (ro) is the longitudinal electric field intensity at the surface of the

conductor at x, for a unit axial current at x', while Zt(ro) Is the trans-SPox
verse electric field intensity at the surface of the conductor at x, for a

unit radial current leaving the conductor at x'.

Therefore, by superposition, the following integro-differential equation

is obtained for the current I
C

d' d-x 'c (x) + j Ic(x' - Zl Ic(x)

- JcdxIZ (r I (x') - -E0 (x) (5.14)
-00

where the impressed electric field intensity E (x) along the conductor Is
0

related to the impressed electric field intensity Ee(x,pO) in the earth next

to the conductor by

dx dxErx) =- •o^ J(x)• = 'e (x'p0 ) " •d [(4 (x) - * e'(x, 0 ) ] (5.15•)

Equation (•l4). is an exact generalization of the approximate transmission

line equations (4.14) and (4.15) derived earlier. Once the current I cx)
C

Is determined from the above transmission line equation, the conductor
potential c (x) and the potentidi In the earth 0 (X,y) are also determined as

Integrals over the current. The difference between the Impressed potential

30



p0 (x,y) and the resultant potential e (x,y) in the earth, which is the

negative induced secondary earth potential e"(x,y), Is given by (10)

o(X,y) - * (x,y) = + dx'Zt(ry)Ux, L(x') (5.16)

Also, the induced secondary potential 4"(x) is greater than the induced
C

secondary potential e"(x,y) of an adjacent point in the earth by an amount
e

I (x)/Y 1 such that (10)

S W W (x) + dxZt(r ) I (x') (5.17)0b('o 0 •c( Y I dx c f.-0 POX dx c

5.2 Integral Transform Representations

In order to solve the characteristic equation (5.14) for the current Ic(X),

a Fourier integral transformation between the space variable x and the wave nUmber

variable I is introduced, I.e., let

F(x) d1T( * e

- FI x )e"J x (5.19)

where • and • are any of the field variables or sources defined above. Therefore,

In the "wave number" domain, the characteristic equation for the transformed

current I (r) is
c
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an 1tr~ (r FdP t (Q Jk (5.22)

whe re

r!2

and

au z(r)A (5.26)

C 0

A~ + Z *J (5.28)

+x Z, %(r Pt)-Rd 4r. 17 (5.29)

(xy )+ - t (r0 xy -po tr ýe (5.37)

5.3ereoragaton Constanieth prcdn deiainte urntI () te

Tofn h urn xteconductor potential (P (x), and the eaeta I teirth ýa(~)aegvnb

IC WCýe0c O x(.8
poenil Px~ tef oloigtasomtoso h rnfradlniuia

rn,&7rr -re

(X.IP) dc+ zt(r .icx 5.29

0 74IV" -

Ipdneare r uiyJ . 32



t P ot

zt(r• + d'xZ (ro )e+x (5.32)

where POX
0 2

rp+ (5.33)0*

z,(rp ) and zt(rp •) are the longitudinal and the transverse mutual impedances,

respe~tively, of two collinear conductor elements separated by the distance r.
When the earth is uniform and displacement currents inthe air are neglected,

the functions z (r and z'(r as derived earlier in Chapter 4 for a

horizonta ddipole, are

I• ~Z. (rpo) = ]• 2T

e POX 1 -2rP

Z J e 2 POPOX Yr( o

w P0X 24r .X (5. 34)

whe re
Y= jk 2 (G21/2 +j)1 (5.35)

Therefore, the functionszjrPO• k,, (rt• ) are

• ~I
zt(r = i-A- Ko(0 Ipo) (5.36)

z or 1T LK (/2 (5.37)

£ 2 1 0 ~ ~ ''Y PO

Since the important part of the Integration range z (rv ) and z (ro), as

given above, vary nearly logarithmically with ý, large variations In C produce

I small changes in these functions. For this reason It Is permissible to

approximate these functions at C o, where o0 Is a constant so chosen that,

in the Important part of the Integration range,
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z )(r zz(r (5.38)

zf(rp,, Z z.(r0) (5.39)

With sufficient accuracy for most practical applications CO can be taken equal

to r, the propagation constant of the cable, in which case the following

transcendental equation for r Is obtained:

=zl (5.40)

or

21 1 1 r , 2 1 2 //Y2
r2 IV+, • K0(Ir P0)] z I += 2 rIK (Irip K + r P A0

IY P 0

(5.41)

if rp0 and pO(Y 2 + r2)½are less than 0.01, then

~ I L n 1.12...zt (rpor) ir JwC DO (5.42)

z•(rP~r 1.2 Jwol In 1..85-"'

,p0 n 2r 2  (5.43)

and

ZI + In 1.85...Zl • InPey•

1 I I 1.12... (5.44)-L, -7 T -c :rp0

An approximate solution to the above transcendental equation is, by Inspection,
2

r 2 Cýý ._L
2 (5.45)
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Inserting this value for Pinto the logarithmic terms above, the expression

reduces to In 1.52

2 138 (5.46)2 In "10

p)0
Since the ratio of the above logarithmic terms is practically unity, for all

practical purposes

(5.47)

5.4 Ground Strokes

The propagation characteristics of the current I (x) along the surface ofC

a buried cable due to lightning strokes to ground in the vicinity of the cable

are noW determined.

5.4.1 Direct Strike (Arcing)

A lightning stroke to ground may arc directly to a buried cable in the

vicinity of the base of the lightning channel, in which case, virtually all

of the current will enter the sheath near the stroke point.

When a lightning current I enters the sheath at the point x = 0 and the
s

sheath is assumed to extend indefinitely in opposite directions from this point,

the sheath current I (x) at the distance x Is given approximately bycIs - jxj
I(x) = e (5.48)

where ris the propagation constant of the earth/sheath circuit, as described

above.

The Induced electric field E0 (x) along the Inner surface of the sheath Is
K - rx

Eo(x) = 1 Z e ( .49)
0 2 1( .9

where Z Is the internal surface Impedance of the conductors per unit length,

as developed in Appendix B.

5.4.2 Indirect Strike (Conductive Energization)

Alternatively, a lightning stroke to ground may be too distant from

a buried cable in the vicinity of the base of the lightning channel to

drc directly to the cable; however, In this case the cable can still be

conductivily energized by the current entering the ground at the base

of the lightning discharge, which Is easily represented mathematically by an

electrode near the wire.
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When a current Is enters the earth at an electrode at the separation distance
Ps fro)m the conductor, the Impressed secondary earth Potential along theconductor Is given by

t (xpo)" Zt(r ) S
where

Ps 2  s•

and

-x = X-X
Therefore, the Impressed electric field Intens•ty along the conductor Is then
given by

""E d-o(Xkpo) f • X (5;.51)
E0 x) dx - L -C (r )e-Jcx je . x ( s )

Therefore,

e0 (;) -W JrCz (r )el'x' 
(552)

t PsC

The conductor current c, the conductor potential c and the earth
potential ý (x,y) are then given by

I ÷ o+ Zt (I(X) .- _ f" ol jj C (-530 -S Z +zJ(r) (r

S• .~ = /
1(r ) z (r)s J (5.54)
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(XA. +0 f~ dt (- 2 -t(r C)zt (r~~ Yd~

where

P p -a 

(5.58)
Therefore, after substituting the values for the transformed longitudinal
impedance z 1 (r Ps and the transformed transverse Impedance zt (r~ PS), into
equations (5,53)-(5,55) the conductor current I 1(x)) the conductor potential *C(x),
and the earth potential (x,y) are approximated bye

e(X,Y) z 4ý0(x,y) - r -
- ()rp.) (5.58)

aind

Y K (ry)
Wj~) + I KO(~y

where

C'Puv) ad

CU (uev eU0-( U,+v) -+ ý-,V

2
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The function I is related to the Bessel and Neumann functions as follows'c0

0(u,v) Jo(v)ln-• - •Y0(v) + LA (5.59)

where

IN /U2+ V2

and

A0  0

A, w

and

wu'l- (i-1)v2A2.,

A.1 0

where Jo and Yo denote, respectively, the zero order Bessel and Neumann functions

of the complex argument v.

Also jV 21

Ko(v) - Io(v)ln 2 (5.60)
la (i1)2 ()4.0

and

10M - JO(Iv)

qd() A Inti -I
dii

where 1o and Ko are the modified Bessel and Neumann functions, and I is the

digamma function.
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CHAPTER 6

Distributed Source

The voltage and current waves on the outermost conductor of a coaxial

transmission line excited by a distributed voltage source due to a lightning

discharge as determined either approximately (Chapter 4) or exactly (Chapter 5)

are now determined.

6.1 Telegrapher's Equation

The transmission line extends for a length Z along the x-axis of a rect-

angular coordinate system, as shown in Figure 6. The transmission line has a

terminating impedance Z" at x=O and a terminating Impedance Z+ at x-k. The

transmission line is excited by a distributed voltage source V(x').

The voltage V(x) and the current I(x) on the transmission line satisfy the

coupled wave equations, c.f. equations (/4.14) and (O.l5),
d_ V - Zi + v' (6.1)
dx
d I = - YV + i (6.2)
dx

where

Z Z L + sz

Y = i/ZT
and =0 )

V. E Wx

These coupled wave equations are easily solved with the use of Green's Functions

for the voltage and current.

-c...-....... ? Green's Funct Ioj~.L.

The voltage V(x) and the current 1(x) on the transmission line due to a

distributed voltage source V(x') are determined by the superposition Integrals

VWx dx'G (x,x,)V(xl)

1Wx dx'G (x,x')V(xl)

where the voltage Green's Function Gv(x,xl) and the current Green's Function

G (x,x') satisfy the coupled wave equations

-- U*~~;-.., U" . - " "J

• '•,• 39
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Fig. 6. Transmission Line Model
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d
r V - " ZGI + 6(x-x') (6.5)

. ,I YGv (6.6)

where 6(x-x') Is the Dirac delta function at x - x'.

The coupled wave equations (6.5) and (6.6) are solved simultaneously to yield

V-(e+Yx + re"Yx) (x < x')

G v(x,x') =(6.7)

V+(e"Yx + r+e+YXe- 2Yy) (x > x')

V- (e+Yx - r-e"yx) (x < x')
C

G (x,x9) = (6.8)V+
S(eYX - r+eXe 2 Y) (x > x')

c

where the propagation constant y and the characteristic Impedance Z are

defined by

Y

and the reflection coefficients r ±are defined by
z - z
Z" = -+ zc

r+ -
+

+ z +-z
c

•z +

The constants V are to be determined from the boundary conditions which relate the

continuity of the current at x x x and the discontinuity of the voltage at x -

I.e.,
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G (XI + ~,XI) - G (X-C. XI) 0 (6.9)

Gv(x' + C, X') - G (xl-e: X') *1 (6.10)

The boundary conditions yield the following values ofV

" XI e -re+YxIeZyL 
6.1

V- +

Therefore,

-e ~ :Il r e+YI- (e +x + r-e-y ( < ~'

Gv(X'xI) (.3

Fe- fYX' (e-YX +, re+4yxJ 2y) (N > xI)
2(1-rere+2y.1)

+ ~ re~eY (e+Y reY (x < xI)

G (XX) (.4

+ e +YX I - -e-YXI (eyx- re+xe e 2yt) (x > x)
2Z 0(r- r + e 2y
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CHAPTER 7

Transfer Functions

Once the induced current and voltage surges on the outer conductor (p-p,)

of a coaxial conductor are known due to a nearby lightning discharge, the induced

current and voltage surges on the Inner conductor (p - p<) can be determined via

the use of the impedance transfer functions for a coaxial cable, as developed In

Appendix B. As shown in the Appendix B,

Ex PP'> Zee ext + Zel Int

E x p-p< z leext + ZiIInt (7.2)

where

Z k 1 Aee
ee -jwt 21rp> A

Zei - " 27T P<P> A

e -jwr 2ir p<p> ,
k I AtI

and i -Jwt 21Tp< A'r
and

Aee w YI(kp<)Jo(kP>) + JI(kp) Yo(kp>)

Ai1 = Y1 (kp>)Jo(kp<) + JI(kp>)Yo(kp<)

and
A - J1 (kp>)Y1 (kp<) - JI(kp<)YI(kp>)

A' J 3 1 (kp<)Y1 (kp>) - J1 (kp>)Y 1 (kp<)

If the coaxial cable Is composed of several concentric shells rather than

Just one, as depicted above, then the above formulas can be used recursively to

obtain the cirrent and voltages on the innermost cylinder due to the current

and voltages on the outermost cylinder.
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CHAPTER 8

Conclusions

The above theories are all that are necessary to find the Induced voltage

and current surges on the center conductor of a coaxial conductor resulting

from the penetration of the outer armour and the Inner shield of the cable

of a transient electro-magnetic pulse caused by a nearby lightning discharge

to earth.

The resulting equations are being programmed for numerical solution on a

digital computer. When the program codes are completed and checked, a parametric

study of the results will be undertaken. The results of the parametric study

will be presented In a forthcoming report.

M~CED'N PAG BLAOCIPZOT Pjjjp=
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APPENDIX A

Surface, Longitudinal and Transverse Impedances

In this Appendix, the Impedances defined in (4.11), (4.12), and (4.13) are

evaluated and the results are listed In (4.19)-(4.23). The derivation Is put

lit on Appendix so that It would not Interrupt the continuity and the development

of' the main text. In additon, because of the geometry involved In the derivation,

It Is convenient to take a Fourier transform with respect to x, instead of a Hankel

transform with respect to r, as Is the case In the main text. It is felt that

thte least confusion Is caused by removing the derivation to an Appendix.

A.1 Hertz Vector

The geometry to be considered is a conducting wire of radius b, surrounded

Iiy i coaxial insulating layer of thickness c-b and embedded in an extended region

,t shown in Figure A.I. The axis of the wire is taken to be the x-axis. As

demonstrated later, all boundary conditons are satisfied by using the x-component

Of Hertz vector rx , alone. In terms of the x component of the Hertz vector Txj

,he field Intensities t and are

2,,aTr a IT

- + 2(arx x 2xi(A1

H= -(a + I we -.- (A.2)

wh'ere if must be a solution of
x

V2 wx. + k, 27T 0 (A.3)

The continuity of the tangential components of the magnetic field intensity, H,

at r-b and r=c requires that

II P7{•C•DIn PAGE BLum.4OT
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air anx•c @X1I
(a + iWE)=C - (a, + I -E-) at r-b (A. 4)

c ar a 7r

( or + I w(a +ie) 'e at r-c (A.5)I I •1 e e ar

In the above equations, the subscript I stands for the quantities or terms related

to the Insulating layer. Is (A.4) and (A.5) are valid for all values of x, It Is
aI xL

obvious that (a. + I1Ee;) I is also continuous at r-b and r-c, which Implies

that the continuity of the normal components of the conduction and the displacement

currents, (a, + iUe.) Er , Is automatically satisfied.

The continuity of the tangential electric field intensity E at r-b and r-c

requires that

"xC +k iT i - + kI 11 at r-b (A.6)

ax 2ax
2  I X1

"x + 22 TrxEd+ k 2r at r-c (A.7)

ax2  ax e xe

Since the Interfaces r-b, -o<x<o, and r-c, -- <x<-, are the entire

cylindrical surfaces, it Is convenient to use Fourier transform with respect

to X,

•x (r,ý,w) = (r,x,w)e+Ji Xdx (A.8)

IT (rox ,60) =i2 (r,&,w)e dý (A.9)

Applying the Fourier transform to (A.3) and noting that v r is Independent of S,x

the differential equation for I is greatly simplified to

I a-c2)
r (r-r-h--) +(kD . - ) X1 0

It Is immediately obvious that the solutions for if are the appropriate

cylindrical functions. Thus, for the conducting wire, (r<b), the insulating

S' 51



region b<r<c, and the earth r>c, the appropriate expressions are, respectively,

ITc (rxw) F ( + F (r < b) (A.10)

11 - [F3() (•) (r)e Yod
IT• (r'x,a}) = 1-]-- (Qir) + F r)] Oe- •dý, (b<r<c) (A.11) :

1 0 2,X 0;

(r,x,w) = 1F( 2)H (r>c) (A.12)wr xe 0 o ,
•. where

To ensure the convergence of these Integrals, the branch

Re(ý)>O, i.s chosen. F, F , F and F are yet to be determined. In terms of these
o 1 2 3

functions, the axial current I carried by the conducting wire can be written asx
I: b

I (x,&) = 2n f Jx(rxw•)rdr

00

v- b(YC + iwe c -cF 0(•)J C b)ejXdý (A.13)

4,) ,(x), E (b,x), as introduced in Sec. 4.1, can also be expressed in

t'rrmn or r, F, F , and F . Substituting these expressions Into (4.10-(4.13),

.F 0~ (ý)ý •c2Jo1 ( c b) e-j Xdý

7 c + [ Fb) e']XdC (A.14)
.I((C + 0~c o()c I

".J I' (a + JWEl) {FI ( )tOo(•lc)-J o(llb)] + F2(,)yo(ti c)-Yo(&lC)]}e'JtXd,

"2'Trb(cT +JWc) J FO(ý)•cJ (&cb)eJJ•Xd (A.1d)

(2)(Fec)e--XdZ
, (.Ce +J(• e e fF__(_ )H_0________

21rb(o +J(jc) fF (0ý J( b)e-j dý (A. 16)
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Sf" {Fi(ý)E[Joýc)-Jo(Eý,b)] + F2 () [Yo(ýIc) - yo(0 1C)]}re J•Xdý

T(1) 21rb (bc7+Jwe) cF () J (cb)e-j CXdd

(A. 1i7)

f/'F 3 (C)H (2) (•c)e-J xdCZT2ix = ...
21Tb (Oc+Jw Ec ) ft& c F () JW (cb) eJ "Xd (A. 18)

Strictly speaking, the Impedances are functions of x, as exhibited In ý.lL)-(A.18).

However, only a moderate variation with respect to x over the major portions of

the wire is expected, except, near the points where I varies rapidly. Furthermore,
x

It can be shown that when the fields under consideration are travelling waves,

these impedances are truly independent of x. Thus, a good approximation to tha

Impedances can be obtained by considering the natural modes guided by the coaxial

configuration.

A.2 Natural Modes

For the natural modes, the external sources or excitations are absent and the

fields are completely specified by (A.IO)-(A.12). To determine Fo, F , F2  F

and the propagation constant, equations (A.l0)-(A.12). are required to satisfy the

boundary conditions (A.4)-(A.7). The resulting expressions are:

(C)cJwc) •cd(•cb)Fo(•) - (oa+Jwe)•l d1 (Clb)F1 (ý) + Y1 (ýIb)F 2 (r)] 0 (A.19)

•t~~i (2(e) c• c 00A.0

(o++JW)•I(J I (E c)F1 (ý) + Yl-c)F2 ()] (+Je)Hl c)F3  0 A.20)

1, J (cb)Fo(•) - 4l 2 [do(•lb)F 1 (4) + Yo(tIb)F2 (4)] 0 (A.21)

2 J(( 1 c)F 1 (i) + Y (Ic)F 2 (0)] - 2 H (2)( ec)F 3 (r) 0 0 (A.22)
0" 0 0 e~(2

(A.19)-(A.22) form a set of homogeneous algebraic equations for F0 , F1 F

SFor a set of nontrivial solutions to exist, it is necessary that
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A A (A. 23)

where

b)Jw J () b)) b

a j we
c o+Jb) (2b) (2b) YA.2b

e e H (2 (rc)Y (i c) H H2 )J C

Equation (A.23) Is the dispersion relation and Is used to solve for the propagation

constant. Also obtained are the dependence of F ,F and F on F
1 2 3 0

TpJj- 'Y(Eb (A.26)

F b) - rY (tIb) (A.27)

F, (J) ý b)[JO(t1 c) - rY,(&,c)] (A.28)

(2)( b) -d~U INI-L I( 1 b)]

*- jj(;,b)J (ý b) - J (b)Ji(& b)

&~ 4~u t(A.29)

+jj(ý, C~ JQb)Y(OQb) - J 0(~ccb)YI(El b)
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Let the propagation constant determined from (A.23) be denoted by r,, then

the current I xon the wire must be determined by

I x(x,w) - y0e 0 f1 06(r-z0 )e j~dý (A.30)

where I Is a constant.
0

From (A.13) and (A-30), F 0can now be determined,

0 ~ 0 A - 1

The evaluation of the Integrals In (A.lLO-(A.18) are greatly simplified by the

presence of the deltat function In (A.31). Thus,

4 1 (ý b)
Zs 27rb (a c+JWu ) J1 (4 cb) ( 7 2

z -Josi 1 (a I+JWC 1 ) F1(ý)(J 0(C4c)-J 0 (C4b)] + F2(d(Y 0 ( 1 c)-Y 0QIb] (-3
L, 21'b(a c+JwC c 4 F o(zJQ b

z jWije (a +JWCe) , H 0(2) (%C)
L2 e7bc eJC- FcC i( (A.34)

ZT-1 Fj(ý)(J (41 c)Ji (ýib)] + F2 )(0Y 0(4l c)-Y (ýf b)] A.5
2' c uJc & c F o(O Qcb

F() H (42 )

T2 Zwrb(cr0 w- F 0 C i (A.36)

hthse expressions are valid in general. They can be simplified for highly conducting

wires by replacing the cylindrical functions with their appropriate approximations.

55



APPENDIX B

Internal and External Impedances

The Internal and external impedances of cylindrical conductors are required

when the frequency is such that the skin effect Is considered.

For a long cylindrical conductor oriented along the x-axis, with Internal

or external coaxial return, the Hertz potential 7r is Independent of € and x and

has a component In the x-direction only. Therefore, in equation (2.14),

n =0IS)
S= 0 (B.l)

Hence

Sk(.3)

Therefore, the Hertz potential Is explicitly chosen to be, i r x x, where

T '- c J (kp) + cY 0 (kp) (B.4)

where c and c are arbitrary constants to be determined from the boundary1 2

conditions. The field Intensities are determined by

Ex - k2Trx (B.5)

H W o (B.6)x

and

ax Vtr (8.7)

Ht - -Jw" "xVtITx (B.8)

Therefore, the only non-zero components of the field Intensities are

E k2 [C J (kp) + c Yo (kp)] (B.9)

aH -JwE k[c J (kp) + c Y (kp)] (B.lO)l11 21l

If the conductor has an Inside radius p< and an outside radius p>, the magnetic

field Intensity H, at p - p< must be zero, provided the conductor current lext

returns outside of the conductor, and at p-p> must equal Iext/27Tp>, I.e., from

Ampere's Law .

PRECEDIMf PAGE BLA•C.NOT FX1bVD
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2rPHI =0 (8.11)2ITP<H - 0~p

21Tp>H W Iext (B.12)

Hence, with the values of H from the above equation, the boundary conditions

for c and c are
1 2

c J (kp<) -c Y (kp<) M 0 (B.13)

c J (kp>) - c Y (kp>) - - ext (B.14)
1 1 2 1 > j2 k 21tp>

which are easily solved for c and c to yield1 2

Ci . I ext YI(kp<)

jwFe k 2nrp> --.. (B.15)

I ext JI(kp<)c -- xt(8.16)
2 -Jw k 2rTp> A

where the determinant A is defined by

Aý - J (kp>)Y1 (kp<) - JI (kp<)Y (ko>) (B.17)

Therefore, the Hertz vector becomes

T I ext Y (kp<)J (kp) - JI(kp<)Yo(kp) (8.18)

x J 7-•" k 2 > iAp>

and the electric field intensity in the x direction becomes

k Iext Y1(kP<)J o(kP) - J(kp<)Y (kP) (B.19)
E. p> A

The ratio of the electric field along the outer surface p - P> to the total

4Aternal current Is defined as the external surface Impedance with external

return Z ' andthe corresponding ratio of the electric field along the Inner

surface p - p< to the total external current Is defined as the Internal surface

impedance with external return Zie, i.e.
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E w ý' A e.!E . k I Aee (B. 20)

Ze 'ext Wt 21rp> A

ext >

where

Aee inY (kp <)J (kp) - JI (kp<)Yo(kp>) (B.22)

The following Wronskian relation has been used:

"-Y (kp<)J (kp<) + J (kp<)Yo(kp<) 1 l.2)

1 < 0 < I < 0 < kp< (.3

If the conductorhasan Inside radius p< and outside radius P> the magnetic

field Intensity .K. at p=p>.must be zero, provided the conductor current 'Int

returns inside of the conductor, and at p-=p< must equal I int/2Trp<, I.e., from

Ampere's Law

2•P>H pIp> 0 (B.24)

2rp < H@ P %<-I int (B.25)

Hence, with the values of H from the above equation, the boundary conditions

for c and c are

c J(kp;) - c Y (kp>) - 0 (B.26)
1 1 2 1

c J (kp<) - c Y (kp<) n- (B.27)
I I Jwt k F2nP-<

which are easily solved for c and c to yield
I ' 2

IjI lnt Y I(kp>

c; - k 2¶p< At'-V- (B.28)

k 'Int J (kp) (8.29)

*2 jZ irp< At

( "A
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where the determinant PA is defined by

A' -J (kp<)Y I(kp,) -J I(k p)VYI(kp <) (B.30)

(I

in

7T x IP<)Y J I (kp >)J 0 (kp)-J <(kp >) (8.32)

The ratio of the electric field along the outer surface s to the total Internal

current s defined as the external surface Impedance with Internal return Zec;oande

the corresponding ratio of the electric field along the Inner surface p-p< to the

total internal current Is defined as the Internal surface Impedance with Internal

,return Z11 , i.e.,

x E __PP< k I tll (33)
Znt "-< At

Z E xl __P= 1 1 1 1 (a.34)

Zel I int -2i p<p>

where

A'Y1  I (kp>)J (kp<)-dI (kp>)Y 0 (kp<) (8.35)

The following Wronsklan relation has been used:

Y y (kp>)J (kp )+j (kp>)Yo(kp>)(.30 p (B.36)

Therefore, by superposition,

E -PWP> Zee Iext+Z el Int (0.37)

ExIP p< Zielx+Zii Iit (B.38)

Notice that
A rnA

Therefore e -
Ze Zei
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For solid conductors (p= 0), Z is usu.lly referred to as the Internal
ee

impedance Z. of the conductor, i.e.

Z. I I Ze - k - okP

p< - jwc 27rp> J<(kP>)

When the Bessel and Neumann functions are replaced by their asymptotic

expansions for large values of their arguments, the following approximate

formulas are obtained, which apply for the type of cylindrical conductors

ordinarily encountered.

271 4. - (B.40)
I coth cat--ee 27 p> 2a P< P>

2 csch ct (8.42)le 2?r

01 3 +z -- f coth at (B.43)1l 2Tr p< 2 + a P> P<B.

wh re

t P >- P<

~z C
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APPENDIX C

Self and Mutual Impedances

The self andmutual impedances of earth return conductors are required between

two current carrying paths, such as the paths C and C'as shown In FIgureCI.

The fields due to a Hertzian dipole located on the curve C' and oriented

In the direction of the z' axis have the forr:

92
E z It' [-Z X(R) + - 2  z t(R)] (C.1)

z az'2t

t' " IV'-- z t(R) (C.2)

t a' t

Therefore, the fields due to a continuous distribution of Infinitisimal dipoles

distributed along the curve C' have the form

b'

Z I dI[-Zt(R) + -- Z (R)] (C.3)

Cb

E - f d,' zzi V Z(R) (C.4)

C'

The voltage V Impressed along the curve C in the same plane as C' Is determined by

b b
V =- f dl I f dz('z'E ' .+ ^-') (C.5)

a a
C C

Therefore,

b b' 92
"V-i f • f &' (-Z,(R)co# + ÷ Zt (R)] (C.6)

8a a
C C1

s i nce

., - cos

z Vt- - sin 4
ti-
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A

Fio. C.1 Mutual impedance Between Two wires C and C
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Ai

and

*'-•" = • cos€ + sin

The voltage V Is now evaluated as

b bi
V- I f dk. f dP,.' Z (R) cos -IZ t(R)

a a' (b-a)(b'-a') (C
C C'

The mutual Impedance between the two current paths C and C' is defined as

b b'
zm a f dX f dX' Z (R)cos0 - Z (R )

Ma a' t (b-a) (b I-a) (C.C C'

The double Integral Is the mutual impedance between the current paths and

represents the longitudinal impedance between the wires, while the second term

Is Independent of the current paths and represents the transverse Impedance

between the wire terminals through the surrounding medium.

I
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and

a a si
ak a-j cos4 + Zin

The voltage V Is now evaluated as

b b
V = I f d2, f dZ' Zk (R) cos4 I R

a a' 1(b-a)(bl-al)(C7
C C1

The mutual impedance between the two current paths C and C' is defined as

V b b'
Z e I= f dRt f IdPL' Z,(Rcos - Zt(R)

a Ca' (b-a) (b I-a)

The double Integral Is the mutual Impedance between the current paths and

represents the longitudinal impedance between the wires, while the second term

Is Independent of the current paths and represents the transverse Impedance

between the wire terminals through the surrounding medium.
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APPENDIX D

FAA Lightning Study Participants

Florida Institute of Technology - Cable Testing

Dr. Andrew W. Revay, Jr.
Richard M. Cosel

Lightning and Transient Research Institute - High Voltage Facility

James C. Stahmann

Purdue University - Protective Devices

Warren Peele (Project Leader)
Dr. Chin-Lin Chen

Georgia Institute of Technology - Equipment AnalysTs

Keith Huddleston
Dr. Ronal Larson
Dr. John Nordgard

Air Force Institute of Technology - Reliability Aspects

Lt. Col. Jerry L. Hanson
Professor T. L. Regulinski
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